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ABSTRACT 

Many flexible multibody applications are characterized by high inertia forces and motion 

discontinuities. Because of these characteristics, problems can be encountered when large 

displacement finite element formulations are used in the simulation of flexible multibody 

systems. In this investigation, the performance of two different large displacement finite 

element formulations in the analysis of flexible multibody systems is investigated. These are 

the incremental corotational procedure proposed by Rankin and Brogan [15] and the non- 

incremental absolute nodal coordinate formulation recently proposed [19]. It is demonstrated 

in this investigation that the limitation resulting from the use of the nodal rotations in the 

incremental corotational procedure can lead to simulation problems even when very simple 

flexible multibody applications are considered. The absolute nodal coordinate formulation, 

on the other hand, does not employ infinitesimal or finite rotation coordinates and leads to 

a constant mass matrix. Despite the fact that the absolute nodal coordinate formulation 

leads to a complex expression for the elastic forces, the results presented in this study, 

surprisingly, demonstrate that such a formulation is efficient in static problems as compared 

to the incremental corotational procedure. The excellent performance of the absolute nodal 

coordinate formulation in static and dynamic problems can be attributed to the fact that 

such a formulation does not employ rotations and leads to exact representation of the rigid 

body motion of the finite element. 



1    INTRODUCTION 

The computational issues associated with large displacement problems [2, 4, 6, 10, 16, 20] 

become important when flexible multibody applications are considered. This is due to the 

high nonlinearities in the equations of motion, the coupling of the elastic and reference 

motions, high inertia forces and possible motion discontinuities. Therefore, it is important 

to carefully examine the accuracy, robustness and efficiency of the computational procedures 

used in the large displacements of multibody system applications. The most widely used 

formulation in flexible multibody dynamics is the floating frame of reference formulation 

[12, 13, 14, 19]. The use of this formulation, however, has been limited to small deformation 

problems. In the floating frame of reference formulation, the body elastic deformation is 

described in a body coordinate system, and it is assumed that this deformation is small 

in order to justify the use of linear modes [19]. Consequently, this formulation has been 

rarely used for large deformation problems, which can be analyzed more accurately using a 

full finite element representation. Nonetheless, large deformation problems can be examined 

using the floating frame of reference formulation by dividing the flexible body into a large 

number of bodies, each of which has its own body reference. This approach, however, leads 

to large dimensionality and nonlinearity of the inertia forces. 

There are two types of finite element procedures that can be used for the large defor- 

mation analysis; incremental and non-incremental. The incremental approach is the most 

widely used procedure for the solution of non-linear large rotations and large deformation 

problems in structural applications. Several incremental procedures have been developed for 

non-isoparametric elements, in which infinitesimal rotations are used as nodal coordinates. 

In principle, these procedures can also be used in multibody applications, since such proce- 

dures can also be used to describe the large reference displacements and rotations which are 

characteristics of multibody problems. However, the limitations on the rotation increments 

in some of these procedures, as will be discussed in this paper, and the fact that these pro- 



cedures do not lead to an exact rigid body inertia representation as the result of the early 

linearization of the equations of motion [17], make the incremental approach less attractive 

to use inflexible multibody problems. Belytschko and Hsieh [6] used the converted coordinate 

system and applied it to the dynamic analysis of structural systems that undergo large rota- 

tions. In this formulation, a convected coordinate system is assigned to each finite element 

and the element internal forces are first defined in the element convected coordinate system 

and then transformed to the global coordinate system.   A basic feature of this technique 

is the decomposition of the global displacement field into rigid-body and strain-producing 

deformation components.  The increment steps are chosen such that the element rotation 

between two consecutive configurations is small and the element shape function and local 

nodal coordinates can be used to describe this small rotation. Argyris et al. [2] presented a 

detailed discussion on the convected coordinate procedure and the large deflection problems. 

They introduced the natural approach that refers to the separation between the rigid body 

displacement field and the natural deformation in the total displacement field of a finite 

element.   Hughes and Winget [10] presented an efficient algorithm to define the displace- 

ment increment over the step in the large deformation analysis and demonstrated that a 

unique large rotation vector can be assigned to any rotation in large deformation problems. 

A corotational procedure for the solution of nonlinear finite element large rotation problems 

was proposed by Rankin and Brogan [15]. This procedure will be discussed in detail in the 

following section and will be used in the study presented in this paper. In this procedure, 

the contribution of the so called large rigid-body rotations of the element is removed from 

the global displacement field through the use of an element convected coordinate system. 

A nonsingular large rotation vector is introduced to describe the nodal rotations [3]. Hsiao 

and Jang [9] extended the use of the corotational procedure to the dynamic analysis of pla- 

nar flexible linkages. A detailed corotational formulation for the dynamic analysis of planar 

beams undergoing large deflections has been recently presented by Behdinan et al. [5]. 



A new non-incremental approach, the absolute nodal coordinate formulation, has recently- 

been proposed [19]. This formulation differs from other existing finite element formulations 

in the sense that no infinitesimal or finite rotations are used as nodal coordinates. The 

set of nodal coordinates consists of global displacements and slopes. Using this approach, 

beams and plates can be treated as isoparametric elements, and therefore there is no need 

to introduce an element coordinate system to describe the rigid body rotations of the finite 

element. The absolute nodal coordinate formulation leads to a constant mass matrix, while 

the elastic forces are nonlinear functions of the element coordinates. In the absolute nodal 

coordinate formulation, large rigid body displacements including large rotations produce zero 

strains in the finite elements. It was demonstrated [19] that in order to obtain correct results 

in the dynamic analysis, a consistent mass approach must be used in this formulation. 

It is the objective of this paper to examine the performance of the absolute nodal co- 

ordinate formulation by comparing it with the corotational procedure presented by Rankin 

and Brogan [15] and implemented in the finite element code ANSYS [1]. It will be shown 

that numerical problems are encountered when the incremental procedure is used in flexible 

multibody applications. This paper is organized as follows. In Section 2 the incremental 

corotational procedure proposed by Rankin and Brogan [15] is reviewed. This procedure will 

be extensively used in our investigation, and therefore, the review materials presented in Sec- 

tion 2 are used as the basis for the discussion presented in the following sections. In Section 

3, the non-incremental absolute nodal coordinate formulation is introduced. In Section 4, the 

performance of the absolute nodal coordinate formulation in static problems is examined and 

compared with the incremental procedure. Two problems with known analytical solutions 

are considered. These are the elastica problem and the bending of a beam into a full circle. 

In Section 5, the main features of the absolute nodal coordinate formulation in the case of 

dynamics are summarized. Comparison between the incremental corotational procedure and 

the- non-incremental absolute nodal coordinate formulation when flexible multibody appli- 



cations are considered is presented in Section 6. Summary and conclusions drawn from this 

study are presented in Section 7. 

2    COROTATIONAL PROCEDURE 

The incremental procedure has been widely and successfully used in the nonlinear finite 

element analysis of large rotation structural problems. The incremental finite element coro- 

tational procedure proposed by Rankin and Brogan [15] has been implemented in several 

general purpose structural analysis codes such as ANSYS, and has been used in the analysis 

of many large rotation and deformation problems. In this procedure, which is independent 

of the element formulation, any rigid body motion contribution is eliminated from the global 

displacement field in order to determine the pure deformation. The contribution of the rigid 

body rotations of the element is eliminated by using a convected coordinate system that 

moves with the element. The element equations are first defined in the element coordinate 

system and then transformed in order to define these equations in the global inertial frame. 

These equations are solved for the displacement increments that are then used to update the 

global displacement field of the element. 

In this approach, the nonlinear kinematics of the finite element is defined in terms of a 

large reference motion plus a small deformation; this holds assuming that at each time step 

the displacement increments are so small that the current configuration in which the element 

equations are defined can be considered a valid reference configuration. This implies that in 

one time step there is no large variation in: 1) the deformation within each element, and 2) 

the large reference motion. Consequently, the most important parameter that governs this 

procedure is the time/load step which must remain small. It will be shown later that there 

is another limitation due to the assumption that the total deformation within each element 

must remain small. 



In order to extract the rigid body motion, a local coordinate system is introduced. Using 

the notation of Rankin and Brogan [15], let Ek be the orthogonal transformation matrix 

that defines the orientation of the local element frame in the global frame at the k-th step. 

A rigid body rotation can be extracted from the total displacement as follows. The portion 

ufe-f of the total displacement that causes strain is given by 

u^ = Ej(u5 + X5)-Xe, (1) 

where ug is the total displacement defined in the inertial coordinate system, Xg is the global 

position of an arbitrary point, and Xe is the local position of the same point before defor- 

mation. The vector ufe/ will be used to define the strain energy and the generalized elastic 

forces. The solution of the system of equations at step k yields a displacement increment 

Aufc+1. Using this increment, it is possible to calculate the total displacement ufc+i and use 

it to define the new orthogonal transformation matrix Efc+i. The small rotation increment is 

used to update the rotations within the element using the corotational approach. In fact, the 

deformational rotations can be finite rotations, and cannot be treated as ordinary vectors 

[3]. For this reason, the rotations are described in terms of pseudovectors and the nodal 

deformation rotational degrees of freedom are treated differently from nodal deformation 

translational degrees of freedom. Rankin and Brogan [15] introduced a surface coordinate 

system rigidly attached to each node. This surface coordinate system is defined in the inertial 

frame by the orthogonal transformation Sfc, as shown in Fig. 1. Clearly the deformation is 

produced by a relative rotation of Sk with respect to Efc. This relative rotation is expressed 

through the orthogonal matrix Tfc, where 

Tfc = E£SfcSjE0. (2) 

Hughes and Winget [10] have shown that the quantity 

ft = 2(T-I)(T + I)-1 (3) 
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2(T - TT) 

1 + 7     ' 
(4) 

is always skew-symmetric for any orthogonal matrix T. Rankin and Brogan [15] first consid- 

ered the following definition of Q, that is slightly different from the one presented by Argyris 

[3]: 

0        —U>3      U2 

^ = W3 0 —U>i 

—u2     UJ\       0 

where 7 is the trace of T: 

7 - tr(T) = 1 + 2cos0, (5) 

and 9 is the angle of rotation about the principal eigenvector of T. The matrix fl is associated 

with the vector 

1T 
u-    wi   w2   w3      , (6) 

which is called rotational pseudovector, and becomes the rotation vector when rotations are 

small. Given the pseudovector u>, the skew-symmetric matrix Q, is calculated and used to 

evaluate the matrix T as 
o+in2 

(7) 1    1    1 I     |2" 

Consequently, the norm |u;| of u? is related to 9 as 

.in ö 

\uj\ = 2 tan-. (8) 

In order to avoid singularity, Rankin and Brogan use a different definition of the transfor- 

mation matrix, that is given by 

and, in this case, the relationship between |u>| and 8 is 

(9) 

I       I o    •      0 u> = 2sm-. 1   ' 2 (10) 



This equation shows the limit of Rankin and Brogan's corotational procedure.  Using the 

elements of a? as rotational degrees of freedom, the magnitude |u;| can approximate the angle 

9 only for rotations up to 30°. 

The algorithm proposed by Rankin and Brogan can be summarized as follows. Given the 

configuration of a finite element at step k, local translational displacements are calculated 

using Eq. 1. A relative rotation matrix Tk is calculated using Eq. 2. The rotational freedoms 

are taken from the pseudovector ujk that is associated with the skew-symmetric matrix 

2(Ti-TS 
l + tr(T*) {    } 

Internal forces calculated within the element are then transformed to the global coordinate 

system. Displacement increments required to reduce the out-of-balance forces are then ob- 

tained by solution of the system of equations. While the translational increments are directly 

added to the total displacement vector, the rotational increments Aw are used to update 

the nodal pseudovector u>k using the following equation: 

AUJ/L - \ \uk\2 + uk - \uk X Acv 
uk+1 = ± L  , (12) 

where the sign must be the same as the sign of the quantity 

^/l-i|u,fc|
2-iu,fc.Au,. (13) 

Note that the pseudovector u>fc defines the relative rotation of the surface coordinate system 

with respect to the element coordinate system. The global rotations are not updated using 

the pseudovector approach, but the rotation increments are simply added to the rotations 

at the previous step. A complete discussion on the corotational procedure can be found in 

[1] and [15]. 

As' previously pointed out, the corotational procedure has been widely used and imple- 

mented in general purpose finite element codes (e.g. STAGS, ANSYS). It was demonstrated 

that this procedure is efficient and accurate in large rotation/small strain problems. When 



the strain within the element becomes larger, this procedure does not perform well. It was 

shown in this section that the element local rotations (the rotations of the surface coordinate 

system relative to the element coordinate system) must remain less than 30°, otherwise the 

approximation of the element rotational degrees of freedom with the pseudovector compo- 

nents can not be considered accurate. Furthermore, in order to define correctly the element 

equations in the current element configuration, the element displacement increments must 

be small. While these restrictions may not be serious in structural applications, especially 

when very small load/time steps are used, serious problems can be encountered when simu- 

lating simple dynamic multibody problems as demonstrated by the results presented in later 

sections. 

3 NON INCREMENTAL ABSOLUTE NODAL COORDINATE FORMULA- 

TION 

In this section, the non-incremental finite element absolute nodal coordinate formulation [19] 

is briefly reviewed. In this formulation, the nodal coordinates of the element are defined in 

a fixed inertial coordinate system, and consequently no transformation is required for the 

element coordinates. The element nodal coordinates represent global nodal displacements 

and slopes. Thus, in the absolute nodal coordinate formulation, no infinitesimal or finite 

rotations are used as nodal coordinates and no assumption on the magnitude of the element 

rotations is made. The results presented in this paper will demonstrate that these properties 

of the absolute nodal coordinate formulation make this formulation efficient and accurate in 

the large displacement analysis of flexible multibody systems. 

In this investigation, two dimensional beam elements are considered. The global position 

vector r of an arbitrary point P on the element is defined in terms of the nodal coordinates 



and the element shape function, as shown in Fig. 2, as 

r = = Se, (14) 

where S is the global shape function which has a complete set of rigid body modes, and e is 

the vector of element nodal coordinates: 

iT 
e = ei   e2   e3   e4   e5   e6   e7   e8 (15) 

This vector of absolute nodal coordinates includes the global displacements 

ei = ri, x=0 ' e2 = r2|a;=0,    e5 = ri|B=i i' ee = r2 x—l ' (16) 

and the global slopes of the element nodes, that are defined as 

e3 

dri 

dx 
e4 

x=0 

dr2 

dx 
e7 = 

x=0 dx e8 = 
x=l 

dr2 

dx 
(17) 

x=l 

Here x is the coordinate of an arbitrary point on the element in the undeformed configuration, 

and I is the original length of the beam element. Since absolute coordinates are used, a cubic 

polynomial is employed to describe both components of the displacements. Therefore, the 

global shape function S can be written as 

si    0    s2l    .0    s3    0    s4    0 

0    s1    0    s2l    0    s3    0    S4I 

where the functions s* = Sj(£) are defined as 

S = (18) 

Sl = i-3£2+2£3, S2=z-2e+e, s3=3e2-2e3, S4=e-e, (19) 

and £ = x/l. It can be shown that the preceding shape function contains a complete set 

of rigid body modes that can describe arbitrary rigid body translations! and rotational 

displacements, provided that global slope coordinates are used instead of infinitesimal rota- 

tions. Using the absolute coordinates and slopes, it can also be shown that the beam element 

defined by the shape function of Eq. 18 is an isoparametric element. 



4    PERFORMANCE IN STATIC PROBLEMS 

In this section, the performance of the two incremental and non-incremental finite element 

procedures discussed in the preceding two sections in the static analysis of large deflection 

problems of planar beams is investigated using two numerical examples. These two examples 

of large static deformation are solved using the general purpose finite element code ANSYS 

that utilizes the corotational procedure presented by Rankin and Brogan [15] for the large 

deformation problems [1], and they are also solved using the non-incremental absolute nodal 

coordinate formulation [7]. The results of ANSYS and the absolute nodal coordinate formu- 

lation are obtained using a linear strain-displacement relationship. The first example is a 

cantilever beam loaded with a free end moment that bends into a full circle, while the second 

problem is the elastica problem. Both examples, which have a known analytical solution, 

employ the same beam model. The beam in this model is assumed to have length of 1 m, 

cross sectional area of 1.257E-03 m2, second moment of area of 1.257E-07 m4, and modulus 

of elasticity of 2.0E+09 Pa. 

Bending of a Beam into a Full Circle This example is shown in Fig. 3. The beam 

is divided into 10 elements and the results obtained using ANSYS are almost identical to the 

exact solution. The total CPU time required to obtain the solution shown in Fig. 3 using 

ANSYS on HP-Convex SPP1200/XA-16 was found to be 7.5 sec. The same results were also 

obtained by Rankin and Brogan, who emphasized that the corotational procedure gives good 

results in this kind of analysis because the large deflections of the beam are converted into 

much smaller deformational increments at each load step. They also showed that the results 

obtained using a conventional incremental approach were not accurate and that no solution 

could be obtained when the free end rotation reached about 90° [15]. In the example of 

Fig. 3, the ratio between the nodal rotation increments and the load increments is constant. 

Furthermore, the curvature of the beam remains constant along its length as shown in Fig. 

3. Because of these characteristics, the load step increments are easily generated such that 

10 



the rotational increments lie within the range of allowed rotations. 

The absolute nodal coordinate formulation was also used to solve the same problem. 

Figure 4 shows the results of the global rotation of the beam free end in the full circle 

example. The results obtained using the absolute nodal coordinate formulation are compared 

with the exact solution. In Fig. 5, the solution configurations of the beam loaded by the 

free end moment are presented. These results were obtained by dividing the beam into 10 

finite elements. The total CPU time for obtaining this solution on a PC Pentium 90MHz 

was found to be 7.2 sec. 

Figure 4 shows that the absolute nodal coordinate formulation gives slightly different 

results from the exact solution (6% error) when 9free end = 360°. Nonetheless, the solution 

obtained using the absolute nodal coordinate formulation is quite accurate and the CPU 

time demonstrates that the method is computationally efficient. The difference from the 

exact solution is due to the fact that a linear elastic model was used for the formulation of 

the elastic forces. It can be demonstrated that a better solution is obtained using a higher 

number of elements. 

Elastica Problem The second example of static analysis of beam large deflection 

problem is the elastica problem in which a cantilever beam is subject to a compressive load 

at the free end [7]. The analytical solution of this problem can be found in Timoshenko 

[21]. Figure 6 shows the deformed configurations of the beam predicted using ANSYS under 

different loads over the critical limit for the cases of 10 and 20 finite elements discretization. 

In Table 1, the results of the global rotations of the free end node obtained using ANSYS are 

presented and compared to the exact solutions. The CPU time for obtaining the solution of 

Fig. 6 on an HP-Convex SPP1200/XA-16 was 60 sec and 64 sec for 10 and 20 finite element 

cases, respectively. The solution obtained using ANSYS is very close to the exact solution 

in the range 40°-120°of rotation of the free end. Rankin and Brogan [15] affirmed that 

no .solution to the elastica problem could be obtained using the conventional incremental 

11 



approach. When the load approaches the critical value (for free end rotations < 40°), the 

results from the ANSYS solution are different from the exact solution. This is due to the 

fact that in the vicinity of the critical value, a very small change of load causes a very large 

change in solution configurations. In fact, when the tolerance parameter for the equilibrium 

iterations is decreased for a better iterative refinement, a solution much closer to the exact 

one can be obtained in the range of solutions with free end rotations < 40°. However, it was 

impossible to obtain a solution using ANSYS for loads that give free end rotations > 140° 

using both 10 and 20 elements. The solution for a load which causes an exact solution of 

140° of free end rotation is also inaccurate. Close analysis of this problem showed that for 

loads that give free end rotations > 140° the curvature of the beam in the neighborhood 

of the fixed end becomes quite large, while the rest of the beam remains almost straight. 

When the curvature becomes large, the relative rotation is greater than 30°. Furthermore, 

the automatic load stepping is governed by the average element rotational increments that 

in this example remain small even though the curvature in the neighborhood of the fixed 

end is relatively large. Consequently, it becomes very difficult for the ANSYS code to adjust 

the load step according to the increase of the curvature in a very limited area of the beam. 

This example shows that using the rotations as nodal degrees of freedom leads eventually to 

accuracy and convergence problems. 

The same elastica problem was solved using the absolute nodal coordinate formulation. 

Table 2 shows the results of the global rotation of the beam free end in the elastica problem 

using the absolute nodal coordinate formulation with 10 and 20 finite elements [7]. The 

solution configurations under different overcritical loads are shown in Fig. 7. These results 

show that the solution obtained using the absolute nodal coordinate formulation is very 

close to the exact solution. For loads close to the critical value (solutions with free end 

rotations < 40°), the case of 10-element discretization gives better results than the 20- 

element case, because the solution is obtained for a smaller number of variables while the 

12 



elastic deformation of the beam remains relatively small. Unlike the results obtained using 

ANSYS, accurate solutions are also obtained for free end rotations > 140°. In these cases, 

the 20-element model performs better than the 10-element model, since the more refined 

discretization of the beam can better describe the large deformations. The total CPU time 

used to obtain the solution on a Pentium 90 MHz was 8 sec and 14 sec for the 10 and 20- 

element models, respectively. These results demonstrate that the non-incremental absolute 

nodal coordinate formulation leads to an accurate and efficient solution as compared to the 

incremental corotational procedure. 

5    DYNAMIC PROBLEMS 

The results presented in the preceding section demonstrate that the non-incremental absolute 

nodal coordinate formulation performs well in static problems despite the fact that such a 

formulation leads to a complex expression for the elastic forces. In fact, it is surprising to 

note that the absolute nodal coordinate formulation is more efficient as compared to the 

incremental methods in static applications, and this formulation leads to accurate results in 

the large deformation problems by using a linear strain-displacement relationship. Since the 

absolute nodal coordinate formulation leads to a constant mass matrix, it is expected that 

this formulation will perform even better in dynamics problems. 

Incremental Finite Element Approach The incremental finite element approach 

has been widely used for the dynamic analysis of flexible systems that undergo large rotations 

and deformations. In the incremental finite element formulation, nodal rotations are used 

as degrees of freedom and the nodal coordinates are treated as vectors [2, 10, 15]. The 

internal forces of the flexible bodies are first defined in the element coordinate systems and 

then transformed to the global system. The dynamic equations are then solved for the 

deformation increments. In Section 2, a corotational procedure was presented which allows 

13 



the use of the conventional finite element formulations in large rotation problems. In the 

dynamics of flexible bodies that undergo large rotations, it is important to obtain accurate 

modeling of the inertia of the bodies. However, it was recently demonstrated [17] that the 

use of the incremental approach where rotations are used as nodal coordinates does not lead 

to the exact modeling of the rigid body dynamics of simple structures. 

When the incremental formulations are used with consistent mass techniques, the global 

mass matrix of the element is not constant. As a consequence, the expression of the inertia 

forces does not take a simple form and these forces have to be updated at every time step. 

In the ANSYS code, the conventional shape function of the beam element is used. In this 

shape function, the axial displacement is approximated using a linear polynomial, while the 

transverse displacement is approximated using a cubic polynomial. This is the displacement 

field which is used to generate the ANSYS results presented in the following section. 

Absolute Nodal Coordinate Formulation In Section 3, the generalized nodal co- 

ordinates and the displacement field of the absolute nodal coordinate formulation were pre- 

sented. In this formulation, the global position vector of an arbitrary point on the element 

is defined in terms of a set of global nodal coordinates and a global shape function. It is 

assumed that this global shape function has a complete set of rigid body modes. By differ- 

entiating Eq. 14 with respect to time, we obtain the global velocity vector that can be used 

to define the kinetic energy of the element as 

T^-j^HV^d^SdVy, (20) 

where p and V are, respectively, the mass density and volume of the element. We can define 

the mass matrix of the element as 

M = f PSTSdV, (21) 

where M is a symmetric and constant mass matrix and it is the same matrix used in linear 

structural dynamics. Using the global shape function defined in Eq. 18, the mass matrix of 

14 



the element can be written as 

M = m 

13 
35 0 11/ 

210 0 9 
70 0 -13/ 

420 0 
13 
35 0 11/ 

210 0 9 
70 0 -13/ 

420 

I2 

105 0 13/ 
420 0 -I2 

140 0 
i2 

105 0 13/ 
420 0 -I2 

140 

13 
35 0 

13 
35 

-11/ 
210 

0 

0 
-11/ 
210 

sym. 
105 0 

I2 

105 

(22) 

where m is the mass of the beam element and I is its length. Note that a consistent mass 

approach has been used in defining the mass matrix. It can be demonstrated that this mass 

matrix leads to exact modeling of the rigid body inertia, while a lumped mass approach would 

lead to a wrong modeling of the inertia. Using the expressions of the elastic and inertia forces 

previously obtained, in the absolute nodal coordinate formulation the equations of motion 

of the finite element take the following simple form: 

Me + Qfc = Qa, (23) 

where Qfc is the vector of the elastic forces, and Qa is the vector of applied nodal forces. 

While the mass matrix is a constant matrix, the vector of elastic forces is highly nonlinear 

function of the absolute nodal coordinates. The preceding equation can be written as 

Me = Q, (24) 

where the vector Q = Qa - Qfc. Since the mass matrix is constant, efficient and accurate 

numerical procedures can be used to solve the preceding system of equations for the vector 

of the generalized accelerations e. For instance, a Cholesky decomposition of the symmetric 

positive definite mass matrix can be made once at the beginning of the integration and used 

throughout the entire numerical solution. 
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6    PERFORMANCE IN DYNAMIC APPLICATIONS 

Twoproblems have been investigated in order to compare between the performances of the 

corotational procedure and the absolute nodal coordinate formulation in dynamic applica- 

tions. As expected, problems are encountered when the corotational procedure is used to 

solve some simple multibody applications. Since the ANSYS code can not be used to model 

complex multibody problems, in this section only simple multibody applications are consid- 

ered. These applications are: (1) free falling of a pendulum, and (2) non-smooth motion of 

a four bar mechanism. 

Pendulum Problem The first dynamic problem considered in this section is the free 

falling of a very flexible two dimensional beam under the effect of gravity. The beam is 

connected to the ground by a pin joint at one end, as shown in Fig. 8. The beam has a 

length of 1.2 m, a circular cross section with an area of 0.0018 m2, a second moment of area 

of 1.215E-08 m4, and a modulus of elasticity of 0.700E+06 Pa. In the original configuration, 

the beam is horizontal and has zero initial velocity. 

Two cases are considered in the analysis of the falling pendulum. In the first case, the 

beam is assumed to fall under the effect of gravity, while in the second case the beam is 

accelerated by increasing the gravity constant to 50 m/s2. The results of the two models 

of the pendulum are obtained using the absolute nodal coordinate formulation and the 

corotational procedure proposed by Rankin and Brogan [15]. Three models were considered 

to simulate the motion of the free falling pendulum. These models employ 12, 40 and 

100 finite elements. The configurations of the free falling pendulum at different time steps 

predicted using the absolute nodal coordinate formulation and the 12-element model are 

shown in Fig. 9. Figure 10 shows the transverse deflection of the midpoint of the pendulum 

using the three different models. From the results presented in this figure it is clear that 

the 12-element solution leads to accurate results. The solutions obtained using the 40 and 

100-element models are identical. 
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In the case of the large value of the acceleration constant, the deformation of the beam 

becomes much larger. The configurations of the pendulum'at different time steps predicted 

using the absolute nodal coordinate formulation and the 40-element model are shown in Fig. 

11. In this case, the-12 element solution does not lead to very accurate results, due to the 

large deformation. However, the results obtained using 40 elements are accurate, as shown 

by Fig. 12 where the transverse deflection of the midpoint of the beam is plotted versus 

time. 

Figure 13 shows the transverse deflection of the mid point of the pendulum obtained using 

ANSYS when the gravity constant is equal to 9.81 m/s2. The 12-element model does not 

converge. Furthermore, the 40-element solution diverges after 0.7 sec despite the simplicity 

of the model. Only when a large number of elements is used, convergence is achieved using 

the corotational formulation. It is important to point out that changing the number of steps 

and the number of convergence iterations does not result in an improvement of the results. 

This convergence problem is attributed to the use of local rotations as nodal coordinates 

in the corotational formulation. In this problem, the relative rotation between the surface 

coordinate system and the element coordinate system becomes larger than 30° when a small 

number of elements is used. This leads to problems when the corotational formulation is 

used, as explained in Section 2. 

When the gravity constant is increased to 50 m/s2, the corotational procedure fails in 

the simulation of the motion of the simple pendulum. In this case, a high value of the ac- 

celeration and a relatively high mass produce large inertia forces, and this results in large 

deformations and large angular velocities. The high inertia forces and angular velocities, 

which are characteristics of multibody applications, pose serious problems when the coro- 

tational formulations are used. As demonstrated by the results presented in Fig. 14, 100 

elements are not enough to achieve convergence, and the solution diverges after 0.3 sec. 
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Four Bar Mechanism The simulation results of the simple pendulum previously pre- 

sented in this section clearly demonstrate some of the serious problems that can be encoun- 

tered in the simulations of very simple multibody systems as the deformation and speed 

' increase. In this section, another multibody example, the four bar mechanism shown in 

Fig. 15, is considered. The dimensions and material properties of the links of the four bar 

mechanism are shown in Table 3. All components of the mechanism are made of steel and 

have a circular cross section with diameter equal to 0.4 m. This system is designed to obtain 

high values of the angular velocities of the connecting rod and the follower as compared to 

the angular velocity of the crankshaft. In this system, complete rotations of the crankshaft 

are possible, as the Grashoff's law gives: 

s + l = 1.2 < 1.21 =p + q, (25) 

where s and I are the lengths of the shortest and longest links, and p and q are the lengths 

of the other two links. However, the difference between the two sides of Eq. 25 is very 

small, and this makes the motion non-smooth. In the case of rigid body motion, the angular 

velocities of the connecting rod and the follower are presented in Fig. 16 as functions of 

the angle of rotation of the crankshaft assuming a unit value for the angular velocity of the 

crankshaft. It is clear from the results presented in this figure that when the rotation of 

the crankshaft is close to 0, 2n, 4-rr, ... the angular velocities of the connecting rod and the 

follower change dramatically in a very short time. The system is assumed to be driven by a 

moment, shown in Fig. 17 as a function of time, applied to the crankshaft, and the effect of 

the gravity force is taken into consideration. 

Figure 18 shows the transverse deflection of the midpoint of the connecting rod predicted 

using the absolute nodal coordinate formulation. The transverse deflection is determined as 

the distance of the midpoint from a straight line that connects the two ends of the connecting 

rod. It is clear from the results presented in Fig. 18 that up to approximately 0.75 sec the 

motion is very smooth and the deformation of the connecting rod remains small. After 0.75 
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sec, the crankshaft completes a full revolution and there is a jump in the angular velocity 

leading to a large deformation. 

Several simulations have been performed using the corotational formulation implemented 

in ANSYS, using different numbers of steps in the integration routine. In the first simulation, 

20,000 time steps were chosen while maintaining the option of automatic stepping active. 

This simulation configuration leads to the solution shown in Fig. 19, where the global vertical 

position of point A on the crankshaft is presented and compared to the solution obtained 

using the absolute nodal coordinate formulation. Before 0.75 sec there is no difference 

between the two solutions, but after that the two curves diverge. It is clear that for the 

corotational procedure to converge, a smaller integration step is required. In order to achieve 

this, the automatic stepping option is removed in a second simulation. This change improves 

the results significantly, as demonstrated by the results shown in Fig. 20. However, there 

are still differences when the deflections are considered instead of global positions of nodes, 

as demonstrated by the results shown in Fig. 21. Furthermore, increasing the number of 

time steps to 40,000 does not lead to a better improvement of the results, as shown by the 

results of Fig 22. 

In this four bar mechanism problem, the total deformation of the bodies remains small, 

but the angular velocity experiences jumps each time the crankshaft completes a full cycle. 

Hence, in the vicinity of that configuration, the displacement increments are large within 

a single time step, and the results given by the corotational procedure are not accurate. 

Theoretically, convergence can be achieved as the time step approaches zero. This, however, 

may lead to excessive error accumulation in practice. In fact, Fig. 22 shows that the con- 

necting rod has the same pattern of vibration as previously predicted by the absolute nodal 

coordinate formulation. Nonetheless, in the case of the corotational procedure implemented 

in ANSYS, after about 1 sec, a phase shift develops, and this shift cannot be corrected with 

a further increase in the number of time steps. 
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7    SUMMARY AND CONCLUSIONS 

Many multibody applications are characterized by motion discontinuities, high inertia forces 

and high and discontinuous angular velocities. In this investigation, two finite element proce- 

dures, the corotational technique and the absolute nodal coordinate formulation, which can 

be used for the solution of large deformation problems, are presented and their computational 

performances are demonstrated using several numerical examples. In this investigation, the 

limitations of the corotational formulation, that has been implemented in several general 

purpose finite element codes, are demonstrated when flexible multibody applications are 

considered. It is shown that the incremental procedure can be computationally expensive 

in large deflection problems as compared to the non-incremental absolute nodal coordinate 

formulation in which the nodal coordinates are defined in a fixed inertial frame. The absolute 

nodal coordinate formulation leads to a constant mass matrix which is the same as the mass 

matrix used in linear structural analysis. Therefore, the inertia forces are linear functions in 

the accelerations and the dynamic equations of motion do not include any quadratic velocity 

terms. The elastic forces, on the other hand, are highly nonlinear function of the nodal 

coordinates even in the case of linear elastic models. 

In the case of static analysis of beam large deflection problems, it is demonstrated that 

the absolute nodal coordinate formulation leads to accurate results. On the other hand, it is 

shown that the corotational procedure can be computationally expensive and can lead to a 

lock in the solution because of the presence of the rotations in the set of nodal coordinates. 

The performance of the absolute nodal coordinate formulation in dynamic problems has 

also been evaluated using a flexible pendulum and a flexible four bar mechanism. Due 

to the limitations on the amplitudes of the rotations in the corotational procedure, such 

a formulation can fail in the simulation of simple multibody systems, as demonstrated by 

the results presented in this study. In applications characterized by high inertia forces and 

motion and velocity discontinuities, serious problems can be encountered in the simulation 
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of flexible multibody systems. 

It was demonstrated that the results obtained using the absolute nodal coordinate formu- 

lation agree well with the results obtained using the floating frame of reference formulation 

in the case of small deformation problems [7, 19]. The absolute nodal coordinate formula- 

tion, however, can be used as the basis for developing a new generation of flexible multibody 

codes that-can be used in the small and large deformation analysis of flexible multibody 

systems, as demonstrated in this investigation. 

21 



REFERENCES 

[1] ANSYS User's Manual, Volume IV, Theory, ANSYS Release 5.4, 1997. 

[2] Argyris J.H., Balmer H., Doltsinis J.St., Dunne P.C., Haase M., Kleiber M., Malejan- 

nakis G.A., Mlejnek H.-P., Müller M. and Scharpf D.W., 'Finite Element Method - The 

Natural Approach', Computer Methods in Applied Mechanics and Engineering 17, 1979, 

1-106 

[3] Argyris J., 'An excursion into large rotations', Computer Methods in Applied Mechanics 

and Engineering 32, 1982, 85-155 

[4] Bathe K. J., Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New Jersey, 

1996 

[5] Behdinan K., Stylianou M. C. and Tabarrok B., 'Co-rotational Dynamic Analysis of 

Flexible Beams' Computer Methods in Applied Mechanics and Engineering 154, 1998, 

151-161 

[6] Belytschko T. and Hsieh B.J., 'Non-linear transient finite element analysis with con- 

verted co-ordinates', Int. Journal for Numerical Methods in Engineering 7, 1973, 255- 

271 

[7] Campanelli M., 'Computational methods for the dynamics and stress analysis of multi- 

. body track chains', Ph.D. Thesis, University of Illinois at Chicago, Chicago, USA 1998 

[8] Cardona A. and Geradin M., 'A Beam Finite Element Nonlinear Theory with Finite 

Rotations', Int. Journal for Numerical Methods in Engineering 26, 1988, 2403-2438 

[9] Hsiao K. M. and Jang J. Y., 'Dynamic Analysis of Planar Flexible Mechanism by Co- 

rotational Formulation' Computer Methods in Applied Mechanics and Engineering 87, 

1991, 1-14 

22 



[10] Hughes T.J.R. and Winget J., 'Finite rotation effects in numerical integration of rate 

constitutive equations arising in large-deformation analysis', Int. Journal for Numerical 

Methods in Engineering 15, 1980, 1862-1867 

[11] Hughes T.J.R., The Finite Element Method, Prentice-Hall, 1987 

[12] Kane T.R., Ryan R.R. and Banerjee A.K., 'Dynamics of a cantilever beam attached to a 

moving base', AIAA Journal of Guidance, Control, and Dynamics 10(2), 1987, 139-151 

[13] Kortum W., Sachau, D. and Schwertassek R., 'Analysis and Design of Flexible and Con- 

trolled Multibody Systems with SIMPACK', Space Technology-Industrial & Commercial 

Applications 16, 1996, 355-364 

[14] Likins P.W., 'Modal method for analysis of free rotations of spacecraft', AIAA Journal 

5(7), 1967, 1304-1308 

[15] Rankin C.C. and Brogan F.A., 'An element independent corotational procedure for the 

treatment of large rotations', ASME Journal of Pressure Vessel Technology 108, 1986, 

165-174 

[16] Reddy J. N. and Singh I. R., 'Large Deflections and Large-Amplitude Free Vibrations 

of Straight and Curved Beams', International Journal for Numerical Methods in Engi- 

neering 17, 1981, 829-852 

[17] Shabana A.A., 'Finite Element Incremental Approach and Exact Rigid Body Inertia', 

ASME Journal of Mechanical Design 118, 1996, 829-852 

[18] Shabana A.A., 'Flexible Multibody Dynamics: Review of Past Recent Developments', 

Multibody System Dynamics 1, 1997, 189-222 

[19] Shabana A.A., Dynamics of Multibody Systems, 2nd Ed., Cambridge University Press, 

1998 

23 



[20] Simo J.C. and Vu-Quoc L., 'On the Dynamics of Flexible Beams Under Large Overall 

Motions-The Plane Case: Part F, Journal of Applied Mechanics 53, Dec. 1986, 849-854 

[21] Timoshenko S. and Gere J. M., Theory of Elastic Stability, 2nd Ed., McGraw-Hill, New 

York, 1961 

24 



Table 1. Elastica problem: global rotations of the free end node. Exact and ANSYS solutions 

PI pi*) 
cr 1.015 1.063 1.152 1.293 1.518 1.884 2.541 4.029 9.116 

9free-end   ^Ct 20° 40° 60° 80° 100° 120° 140° 160° 180° 
6] free-end 10 elements 

§ free-end 20 elements 

33.25° 

33.85° 

41.51° 

42.15° 

59.35° 

59.80° 

79.53° 

79.79° 

99.82° 

99.93° 

119.98° 

119.98° 

130.77° 

131.84° 

~ " 

(*) p =■ 
n2EI 
Al2 

Table 2. Elastica problem: global rotations of the free end node. Exact and absolute nodal coordinate 
formulation solutions 

PIP cr 1.015 1.063 1.152 1.293 1.518 1.884 2.541 4.029 9.116 
6] free-end   ßXaCt 20° 40° 60° 80° 100° 120° 140° 160° 180° 
6] free-end 10 elements 

Q free-end 20 elements 

21.41° 

22.53° 

38.56° 

39.74° 

58.80° 

60.11° 

78.55° 

80.04° 

98.53° 

100.17° 

118.48° 

120.20° 

138.56° 

140.22° 

158.88° 

160.22° 

175.57° 

176.11° 

Table 3. Parameters used in the simulation of the four-bar mechanism 

Body w[kg] A[m2] /[m4] /[m] £[Pa] 
Crankshaft 
Coupler 
Follower 

4.9323 
6.9052 
5.5242 

1.257E-03 
1.257E-03 
1.257E-03 

1.257E-07 
1.257E-07 
1.257E-08 

0.5 
0.7 

0.56 

2.1E+11 
2.1E+11 
2.1E+11 



^2 

x* o Relative rotation accounted by matrix XL 

X 

Fig. 1. Corotational procedure 



a) Undeformed configuration 

a) Deformed configuration 

Fig. 2. Absolute nodal coordinate formulation 
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Fig. 3. Cantilever beam bent into a full circle by an end moment. ANSYS solution 
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Fig. 6. Deformed shapes of the cantilever beam subject to overcritical loads. Solutions 
obtained using ANSYS 
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Fig. 7. Deformed shapes of the cantilever beam subject to overcritical loads. Solutions 
obtained using the absolute nodal coordinate formulation 
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Fig. 8. Free falling pendulum 
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Fig. 12. Transverse deflection of the midpoint of the pendulum for different models. (a=50 m/s2) 
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Fig. 15. The four bar mechanism in the original configuration 
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Fig. 19. Global vertical position of points on the crankshaft 
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